New error bounds for the Simpson’s quadrature rule and applications

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three error bounds for the Simpson quadrature rule

Three new error bounds are presented for the well-known Simpson quadrature rule in ] , [ 1 b a L and ] , [ b a L spaces.

متن کامل

Error Bounds for Gauss-kronrod Quadrature Formulae

The Gauss-Kronrod quadrature formula Qi//+X is used for a practical estimate of the error R^j of an approximate integration using the Gaussian quadrature formula Q% . Studying an often-used theoretical quality measure, for ߣ* , we prove best presently known bounds for the error constants cs(RTMx)= sup \RlK+x[f]\ ll/(l»lloo<l in the case s = "Sn + 2 + tc , k = L^J LfJ • A comparison with the Ga...

متن کامل

Error bounds for interpolatory quadrature rules on the unit circle

For the construction of an interpolatory integration rule on the unit circle T with n nodes by means of the Laurent polynomials as basis functions for the approximation, we have at our disposal two nonnegative integers pn and qn, pn + qn = n − 1, which determine the subspace of basis functions. The quadrature rule will integrate correctly any function from this subspace. In this paper upper bou...

متن کامل

Quadrature rule-based bounds for functions of adjacency matrices

Article history: Received 21 January 2010 Accepted 24 March 2010 Available online 17 April 2010 Submitted by R.A. Brualdi AMS classification: Primary: 65F50, 65F60, 15A16 Secondary: 05C20, 05C82

متن کامل

Error bounds for Gauss-Tur'an quadrature formulae of analytic functions

We study the kernels of the remainder term Rn,s(f) of GaussTurán quadrature formulas ∫ 1 −1 f(t)w(t) dt = n ∑

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 2007

ISSN: 0898-1221

DOI: 10.1016/j.camwa.2006.12.008